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TOWARDS AN OPTIMISED SPUTTERED MoS 2 LUBRICANT FILM

@

E.W.Roberts

It is shown that the tribological quality of MoS 2 lubricant films formed by

magnetron sputtering is determined by the choice of sputtering conditions.

By selecting the appropriate conditions, films of extremely high lubricity

and endurance (in vacuum), which are well suited to many space

applications, are obtained. Such MoS 2 films, when applied to precision ball
bearings, give rise to the lowest torques (for the given test conditions)

yet seen in our laboratory. Whilst a remarkably good performance is

obtained in vacuum, tests in air show a marked deterioration in lubricating

qualities. It is demonstrated that this is attributable to the adsorption

of water vapour on MoS 2 surfaces and that the degree of deterioration is

related to the partial pressure of water vapour present. Analysis of
results indicates that the factors relevant to obtaining optimum films are

deposition rate and film composition.

INTRODUCTION

Molybdenum disulphide's efficacy as a lubricant, particularly in high

vacuum, is well established. However its application to surfaces by the

technique of sputter deposition has only recently come into consideration

as a viable process. Interest has grown in this method of application as it

offers several advantages over the more conventional techniques of

burnishing (of powders) and spray coating (of bonded lubricants). These

advantages include:

a) Control over thickness: because the deposition rate is known, thin

(sub-micron) films of the required thickness are readily produced. The

process is therefore particularly suited to the coating of precision

components.

b) Reproducibility: film reproducibility is high provided strict process

control is applied.

c) Strong film to substrate adherence: good adherence which is necessary

for effective, high endurance lubrication is a characteristic of sputtered

films.

d) Coherent films: the lubricant film produced by sputtering is a

continuous layer of high coherence.

* European Space Tribology Laboratory, UKAEA, Risley, Warrington, England.

103



e) Intrinsic films: that is, the coatings are free of materials (such as

bonding agents) which are extraneous to the lubricating process.

Though offering these advantages, sputtering is a complex process involving

many variables. The conditions necessary to achieve lubricant films having

the above qualities must be sought experimentally: this was the aim of the

present study. The task was undertaken by sputter-depositing MoS 2 films
under various conditions of gas pressure and RF power and evaluating the

resultant films in air and vacuum using a pin-on-disc apparatus. The

sputtering conditions necessary to give the best film (tribologically),

once determined, were applied to coatings on ball bearings whose

performance was then evaluated.

MAGNETRON SPUTTERING

Radio frequency sputtering (Ref.1) is brought about by applying RF power

between a target (manufactured from the coating material, in our case

MoS 2) and a substrate (the component to be coated), both target and

substrate being located in a low pressure, argon environment. In these

circumstances an Ar + plasma forms and there occurs a build up of charge on

the target which gives rise to a negative bias. As a result, argon ions are

accelerated towards the target, this bombardment resulting in the emission

of target atoms/ions some of which transfer to the substrate. The process

is depicted in Fig. I. The target, in addition to ejecting target atoms,

emits secondary electrons which help sustain the plasma but which also

bombard the substrate and cause heating. Despite this, sputtering is, in

relation to many other deposition techniques, a low temperature process.

This is desirable, indeed mandatory, where the temper (i.e annealed

condition) of the substrate material must be preserved.

In the present study, film deposition was by means of RF magnetron

sputtering. This is an extension of the RF sputtering process described

above which offers the additional advantages of:

a) High deposition rates.

b) The virtual elimination of secondary electron bombardment of the

substrate and thus lower substrate temperatures.

These are achieved by confining the plasma to an area lying close to the

target by means of permanent magnets located behind the target (the actual

shape of the plasma is governed by the nature of the electrical and

magnetic fields set up within the chamber). An improved ionisation

efficiency results which increases the rate of target bombardment and thus

gives rise to enhanced rates of deposition. The paths of secondary

electrons are constrained by the electromagnetic fields and thus remain in

the vicinity of the target.

A disadvantage, however, is that magnetron sputtering gives rise to films
of less uniform thickness because the effective source area is smaller than
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the target area. A restriction is therefore placed on the size of
component that can be coated uniformly.

RATIONALEOFTESTING

Although simple in concept, sputtering is, as noted earlier, a technically-
complex process. This complexity arises as a result of the large number of
parameters that collectively determine the conditions of sputtering. These
parameters include applied power, gas pressure, target area, target to
substrate distance, substrate temperature and substrate bias. Each
parameter can influence the quality, in terms of structure, orientation,
stoichiometry and adhesion, of the sputtered film (Refs. 2 to 6). Adding
to this complexity is the interdependency of several of these parameters.

To simplify the determination of optimum sputtering conditions only the
effects of changes in argon pressure and R.F power were examined in the
present study: all other parameters being kept constant.

Sputter depositions were carried out at argon pressures of 5, 12.5 and 20
microns (0.67, 1.67 and 2.67 Pa. respectively) and at applied powers of
0.3, 0.6 and 0.9 kW. Thus, in total, nine sputtering conditions were
studied.

The values of the remaining parameters were fixed as follows.

Target diameter: 152.4 mm
Target to substrate distance: 56 mm
Substrate bias: zero volts
Substrate temperature: ambient

No bias was applied to the substrate although its potential during
deposition would rise naturally to that of the plasma potential. The main
intention was to avoid a negatively-biased substrate as this is known to
repel sulphur ions and lead to sulphur-deficient films (Ref. 4).

The substrate was water-cooled during etching and film deposition. However
substrate temperature rose above ambient (though probably remaining below
70 deg.C) due to heat dissipated by depositing atoms.

APPARATUSANDTESTSAMPLES

Sample preparation and sputtering conditions

Depositions of MoS 2 were carried out in a Nordiko Vacuum System equipped
with NM 2000 Sputtering Modules and an N6-14OO pumping system. High vacuum

was achieved by means of an oil diffusion pump. A liquid nitrogen trap,

located above the pump, ensured negligible transfer of oil vapour to the

sputter chamber.
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Coatings were produced, at each of the nine chosen sputtering conditions,

on steel (EN31) discs (thrust washers) for pin-on-disc evaluation (see

below) and on aluminium stubs for film analysis by EPMA (electron probe

micro-analysis). Deposition rates had been measured previously and are

reproduced in Fig. 2. Samples were also prepared on glass slides and

subjected to freeze fracture so that film morphology could be examined by

scanning electron microscopy.

Disc samples were initially cleaned by wiping with cloth soaked in Arklone

P solvent followed by three separate ultrasonic cleans in fresh solvent.

Prior to sputter deposition the steel discs were sputter etched for 15

mins. at a sputter power of 100 W and at the pressure at which the

subsequent deposition was to be carried out (5 to 20 microns At) so as to

remove loosely bound surface contaminants. The target material was cleaned

by sputtering for at least 30 minutes under the intended sputtering

conditions of the test.

Tribological assessment-sliding wear tests

Steel discs were coated to a thickness of I micron and assessed in high

vacuum and air by means of a pin-on-disc apparatus.

The discs had the following specification:

Type: shaft locating thrust washers

Material: EN31 ball bearing steel (52100 AISI)

Hardness: Diamond microhardness 860+10 Vickers

(HRC 58-65)

Surface Finish: Radial O.15 micron CLA

Circumferential 0.10 micron CLA

The coated discs were spring-loaded to 10 N against three, equispaced, un-

coated, EN31 steel balls. A rotational speed of 1OO rpm (0.3 m/sec.) was

employed for vacuum testing and IOrpm for air tests. The speed was reduced

in air so as to reduce rig instabilities which arose as a result of the

higher and noisier torque which characterised in-air performance. The

apparatus was set to trip when the friction coefficient exceeded 0.3 for

0.5 seconds. Film endurance was defined as the number of disc revolutions

completed (or distance travelled) _t trip activation. Where film failure
did not occur within about 4.5 x 10 revs. the test was stopped so as to

enable completion of the remaining tests within an acceptable timespan.

Wear rate calculations were made from measurements of the diameters of the

ball wear scars.

RESULTS

In-vacuo performance

The performance of sputtered MoS 2 in vacuum was assessed through

measurement of endurance, mean friction coefficient and, where failure did

not occur, specific wear rate.
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TABLE 1(a) ENDURANCE (x 10 6 REVS.)

SPUTTERING POWER (kW)

0.3 0.6 0.9

5 0.3 0.9 I .7

12.5 0.7 >4.5 >4.5

20 >4 •5 >4.5 >4.5

TABLE 1(b) MEAN FRICTION COEFFICIENT

SPUTTERING POWER (kW)

Ar

P m

R i

E c

S r

S o

U n

R s

E

12.5

2O

0.3

0.021

0.02

0.01 9

0.6

O.O24

0.01

0.O13

0.9

0.O17

0.01

0.01

TABLE I (c) SPECIFIC WEAR RATE (I0-19 m3/Nm) OF PINS

SPUTTERING POWER (kW)

Ar

P m

R i

E c

S r

S o

U n

R s

E

1.2.5

2O

0.3

12.1

0.6

3.7

5.3

0.9

2.2

3.3

TABLES I (a)-(c) PERFORMANCE OF SPUTTERED MoS 2 IN VACUUM
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Pin-on-disc tests were continuously monitored by recording the torque
output as a function of time. Typically, torque traces were as shown in
Fig. 3, curve A. The curve is characterised by a brief running-in period
followed by a period of stable performance. Film failure, when it occurred,
was seen to be catastrophic, in that it happenedsuddenly over a relatively
small number of disc rotations (Fig. 3, curve A). Because pin wear became
rapid in the failure regime, meaningful measurementsof wear rates could
not be made in those cases where failure occurred within the time
available for testing.

Measurementsof endurance, friction coefficient and specific wear rates are
summarisedin Tables 1 (a), (b) and (c). Endurance (Table 1(a)) is observed
to be strongly dependent on sputtering conditions with the best films
lasting at least fifteen times longer than the worst. It is apparent that
film endurance improves with increasing argon pressure and increasing RF
power. Friction coefficient, however, is less sensitive to sputtering
conditions but nevertheless a similar trend of improved lubricity with
increasing pressure and power is discernible. Note that all the films
examinedgave rise to very low values of friction coefficient ((0.03).

Wear rates of the balls (/0ins), where measurable, were extremely low, lying
in the range 2 to 13xI0-_9 m3/Nm.

Selection of Optimum Sputtering Conditions

From the above performance data the sputtering conditions, within the range

examined, necessary to produce the best tribological film in vacuum can be

determined. In the power/pressure matri_ of Table 2 the regions

TABLE 2 OPTIMISATION MATRIX FOR MOS 2

SPUTTERING POWER (kW)

0.3 0.6 0.9

5 @ @ @

B

Ar

P m

R i

E c

S r

S o

U n

R s

E

12.5

2O

C D

A

E

corresponding to films of highest observed endurance (area ABCE) and lowest

friction coefficient/wear rate (ABDE), within experimental error, are
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shaded. The area where overlap between these two regions exists, and thus

the area in which the optimum sputtering conditions lie, is bounded by

ABDE. Since films produced under the conditions designated A, B, D and E

are of equally high quality then it follows that any combination of R.F

power and Ar pressure which lies within the area ABDE will give rise to the

best MoS 2 film. Based on this reasoning we have chosen as our sputtering

conditions for subsequent tribological assessment those values of R.F power

and Ar pressure lying at the centre of the area ABDE, that is, 0.75 kW and

16 microns respectively.

Performance of Optimised Film in Air

An MoS 2 layer of nominal thickness I micron was sputter deposited under the

above conditions and assessed on the pin-on-disc apparatus in both air and

vacuum. Fig. 4 indicates the changes in friction coefficient _at occur on
cycling the chamber pressure between high vacuum (10- tort) and

atmospheric pressure. It is apparent from Fig. 4 that on admittin_ air into

the chamber there is a corresponding rise in friction coefficient to about

0.18. On re-establishing high vacuum the friction coefficient decreases to

its initially-low value. Thus the effect of pressure on friction

coefficient is reversible for brief periods of air-running. If the film is

run continuously in air then failure occurs after some 15000 disc

revolutions i.e. film endurance is much inferior to that in high vacuum

(see, for example, curve B, Fig.3).

The poor performance of sputtered MoS 2 in air prompted experiments aimed at
determining the factors responsible for film degradation. To determine

which of the main constituents of laboratory air (nitrogen, oxygen and

water vapour) reduces the lubricity and endurance of MoS 2 the following

tests were carried out. A test disc was coated with sputtered MoS 2 and

mounted in the pin-on-disc apparatus. The disc was run-in under high

vacuum, until the friction coefficient had become steady at a value of

0.01. The vacuum pump was then isolated and nitrogen bled slowly into the

test chamber. The flow of gas was controlled in such a way that the

pressure increased incrementally and, at each pressure rise, time was

allowed for the torque to stabilise. In this manner it was possible to

determine how the friction coefficient varied with changing gas pressure. A

similar test was carried out using oxygen. The results of both tests are

shown in Fig. 5(a). The introduction of nitrogen has but a small effect on

the friction coefficient whilst the influence of an oxygen atmosphere is

greater, increasing the friction coefficient from 0.01 to 0.02. A similar

test was then conducted using laboratory air (RH=50%, temperature=20.5C) as

the test gas. Fig. 5(b) indicates that, upon admission of air, there is a

small increase in friction coefficient. This increase , which occurs as the

pressure rises from 0.1 tort to 10 tort, corresponds to that seen in the

previous tests using nitrogen and oxygen and is presumably attributable to

the presence of these gases. Further increases in air pressure up to

atmospheric pressure are accompanied by an emphatic increase in friction

coefficient, which reaches a value of 0.16. This increase has two

components. These can be resolved by differentiating the curve of Fig. 5(b)
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to obtain the rate of change of friction coefficient with gas pressure (Fig.

5(c)). Thus the first increase occurs at a pressure of 80 tort and the

second, final increase at a pressure of 300 torr. It may be inferred that

these two effects are due to the presence of water vapour. Note that these

values (80 tort and 300 torr) correspond to partial pressures of water vapour

of 0.9 and 3.4 tort (given that the air had a relative humidity of 50 % and a

temperature of 20.5 deg.C). If present at these pressures in laboratory air

these would give rise to relative humidities of 5% and 19% respectively. This

implies that lubricity in air is determined by the dryness of the air: as a

guide, best lubricity would be obtained at RH < 5%, intermediate lubricity

in the range 5% < RH < 19% and relatively poor lubricity at RH > 19 %.

On re-establishing a vacuum within the test chamber the friction coefficient

immediately drops to 0.045. This decrease is the result of the evaporation of

some, but not all, of the adsorbed water from the MoS 2 lattice. On rotating

the disc at 60 rpm there is a further decrease in friction coefficient to

about 0.02 resulting from desorption of the remaining water molecules.

Performance of sputter-coated ball bearings

Using optimised sputtering conditions, ball bearings (designation: ED20;

type: angular contact) were coated with MoS 2 and assessed (at 10Orpm) under
high vacuum in a pre-loaded (4ON) pair configuration. The bearings were

fitted with steel (EN31) cages. Two types of test were undertaken. In the

first of these all the bearing components with the exception of the balls

were coated (i.e. both raceways and EN31 cage). In the second type of test

all components of the ball bearing were coated (i.e. including the balls).

The coating thickness was nominally 0.5 microns. In each test six bearings

were run until the torque reached 8 x 10 -3 Nm., this corresponding to a

sliding (microslip and spin) friction of approximately 0.4.

The manner in which mean bearing torque varied with number of revolutions

under vacuum is summarised in Fig. 6. Bearings having uncoated balls

exhibited very low mean torque (typically 4xi0-* Nm) and failed following

some one million revolutions. Bearings having all their component parts

lubricated showed higher torques (about twice the level seen with bearings

employing uncoated ball_ though a significant improvement in endurance was

observed (typically 4xi0 ° revs.).

Thus coating of the balls with MoS 2 in addition to raceways and cage brings
about, on average, a fourfold increase in endurance though at the expense of

a twofold increase in torque. The improvement in endurance may simply be a

consequence of the increase in MoS 2 -coated area on surfaces which undergo
rolling contact (it is proposed to test this notion by coating only the

balls). The reason for the twofold increase in torque consequent upon coating

balls is as yet unresolved.

Note that, in air, ball bearings with all components coated achieved a

lifetime of only about 0.25x106revulutions.
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Film Composition and Structure

Analysis of MoS 2 by EPMA indicated small deviations from stoichiometry
(Table 3): films being either sulphur-rich or sulphur-deficient.

TABLE 3

Ar

P m

R i

E c

S r

S o

U n

R s

E

RATIO OF SULPHUR TO MOLYBDENUM ATOMS IN SPUTTERED MoS 2

SPUTTERING POWER (kW)

5

12.5

2O

0.3

1.67

2.00

I .71

0.6 0.9

1.69 1.75

2.26 2 ,7.I.2

2.21 2.08

Observations of MoS 2 films by scanning electron microscopy revealed two

types of film morphology. Micrographs of these morphologies which we term

Type A and Type B are shown in Fig.7. Type A films are distinguished in

section by a columnar structure which gives rise to their distinctive

surface appearance whereas the structure of type B films appear more

amorphous, their surfaces exhibiting a granular texture. Table 4 indicates

the film morphologies resulting from the sputtering conditions examined.

TABLE 4 TYPES OF MoS 2 FILM STRUCTURE

SPUTTERING POWER (kW)

Ar

P m

R i

E c

S r

S o

U n

R s

E

12.5

2O

0.3

B

B

B

0.6

A

A

B

A

It is apparent from Tables 3 and 4 that the optimised MoS 2 film has a type

A structure (columnar) and is, to a slight degree, sulphur enriched.
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DISCUSSION

Examination of our results and observations indicates three features common
to the best performance films. These are:

a) film compositions are near-stoichiometric and are,
extent, sulphur rich.
b) the films are formed at relatively high deposition rates.
c) the films exhibit type A morphology.

to a slight

Fig. 8 showsthat, within the range of compositions observed, the lubricity
of NoS2 films increases with sulphur content. It further appears that
deposition rate is a crucial parameter in obtaining the desired
stoichiometric or sulphur-rich films. Thus as shown in Fig. 9 high sulphur
content is a feature of films deposited at high deposition rates.

This observation is consistent with a view recently put forward by Buck
(Ref.7) in which it is proposed that the composition and hence quality of
sputtered MoS2 films is governed largely by the level of water vapour in
the sputtering chamber during deposition. He derives an equation relating,
in effect, a film "quality factor" to the deposition rate of MoS2 and the
partial pressure of water vapour. In essence, higher quality films are
obtained by maximising the MoS2 deposition rate and minimising water vapour
contamination. This is consistent with our observation that the best
lubricating films are obtained at the higher deposition rates. Buck also
observes that poor-quality MoS2 films are depleted of sulphur. This also
is consistent with our findings.

We observe that optimum films exhibit Type A structure. However a strong
correlation between film structure and film performance is not proven since
some observations were inconsistent with this e.g one film of poor
endurance (0.6kW/5 microns) exhibited Type A structure and conversely one
film of high endurance (0.3kW/20microns) had a Type B structure (Table 4).
Further, these structures are of films deposited on glass substrates and
the conditions giving rise to each film morphology on glass maydiffer from
those conditions applying to depositions on steel. It might be expected,
for example, that higher substrate temperatures would arise with glass (due
to its lower thermal conductivity) and film morphology is known to be
dependent on substrate temperatures (see for example Ref.8). Thus, at
present, the relationship between film morphology and lubrication is not
clearly established.

In air, particularly where motion is of a purely sliding kind, the
lubricating properties of sputtered MoS2 are much inferior to those
observed in vacuo. Our studies confirm an earlier finding (Ref. 9) that
this degradation is attributable to the presence of water vapour. However
our observation that the degradation in lubricity is a two stage process
which dependson the partial pressure of water vapour gives further insight
into this phenomenon.In particular, these observations may indicate that
water molecules are adsorbed at two types of surface site. Upon adsorption
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of water vapour at the first type of site the friction coefficient
increases to about 0.05 and on filling the sites of the second type the
coefficient of friction rises to 0.16. Since the second site is readily
vacated on reducing the chamberpressure and desorption from the first site
requires only a small increase in temperature above ambient (obtained by
increasing disc speed), it may be surmised that the heat of adsorption
associated with the first type of site is higher than that of the second,
though both are low and correspond to heats of adsorption characterisic of
physisorption rather than chemisorption. It remains a matter of conjecture
as to which sites in the MoS2 lattice correspond to the above. Clearly
intercalation sites and edge sites are candidates since adsorption at each
type of site would likely affect film lubricity. Indeed there is some
evidence that water molecules can penetrate MoS2 layers (intercalation)
(Ref.10). However the precise mechanism responsible for lubricant
degradation upon physisorption of water is not, as yet, fully understood.

CONCLUDINGREMARKS

It has been shown that, to obtain high lubricity films, high deposition
rates are required. Such deposition rates are afforded by RF magnetron
sputtering under conditions of relatively high argon pressure and R.F
power.

Whendeposited under optimum sputtering conditions MoS2 films are observed
to give rise to very low levels of friction (friction coefficient = 0.01)
when measured under conditions of sliding motion (pin-on-disc) under
vacuum. This same film, when tested under conditions where motion is
principally of a rolling kind (i.e in ball bearings), gives rise to
ertremely low torque levels. Indeed, these results represent the lowest
levels of torque hitherto seen at ESTL, regardless of the lubricant
employed, for bearings of this type tested under identical conditions. As
an illustration Fig. 10 compares the bearing torques (as a function of
rotational speed) obtained in vacuumwith various lubricants. These results
show that the lubricity of sputtered MoS2 in vacuumis second to none and
that the lubricant is well suited to those bearing applications where very
lowtorque and torque noise are required and where the finite film
endurance is not a problem.

In air (RH = 50%) MoS2 loses its high lubricity and endurance is reduced
very significantly. However, lubricity is recovered on re-establishing
vacuum provided operations in air are brief (when comparedwith endurance
in air). The degree to which lubricity is lost is dependent on the partial
pressure of water vapour present and occurs in two distinct stages as this
pressure is increased. It is recommendedthat if in-air operation is
unavoidable then, where possible, the humidity level should be kept below
5%RH or failing this, below 20%RH.
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Figure 9. - Sulphur content as func-

tion of deposition rate.
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ED20 bearing pairs employing different

lubricants (under vacuum).
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